Elysa Greisman, Technion Canada’s New National Executive Director

Share on:
Technion Canada is proud to welcome our new National Executive Director, Elysa Greisman.
Elysa is a talented and seasoned executive with over 20 years of senior management experience. She brings a wealth of expertise in the areas of fundraising, marketing, strategic planning, budgeting, leadership of operations and staff. She is a respected leader in the community who is passionate about education and has a strong commitment to Israel and Jewish values. She has worked at the Jewish Foundation/UJA Federation and at several Jewish Day Schools in Toronto.
We look forward to many successful years for Technion Canada under Elysa’s leadership.

Does the Organization of DNA During Sperm Development have an Effect on Future Offspring?

Share on:

Researchers at Technion’s Rappaport Faculty of Medicine present new findings regarding the organization of DNA during sperm formation and its implications on future organisms. The research which was published in the journal Nature Structural & Molecular Biology was done by Prof. Noam Kaplan and MSc student Haia Khoury from the Technion, together with their colleagues at Cincinnati Children’s Hospital Medical Center. Leading the research at Cincinnati were Prof. Satoshi Namekawa and research student Kris Alvattam.

  The DNA in the living cell is packed, together with the proteins attached to it, in a molecular complex called chromatin. Although it may seem that the chromatin serves only as a packaging of genetic data within the DNA, the way in which the DNA is packed considerably influences cellular systems. For example, DNA that is tightly packed may become inaccessible to biological machinery which reads the DNA, possibly leading to inactivation of genes encoded in that DNA sequence.  

This current research examined the organization of the DNA during spermatogenesis – sperm development. Although spermatogenesis has been long studied, the way in which DNA is packed during this process has not been mapped in detail due to technological challenges. Now, researchers have met this challenge by using a novel technology, called Hi-C, which combines experimental molecular biology with computational analysis to measure the spatial organization of DNA.    

Each day, millions of sperm cells are created in the human male body. One of the critical stages in the formation of sperm cells is meiosis (cell division). Early in meiosis, DNA is drastically reorganized as the chromosomes condense in preparation of the upcoming cell division. Furthermore, these condense chromosomes swap segments of DNA and in this way increase genetic variation.

The Israeli-American research team successfully isolated mouse sperm cells at the start of meiosis when the chromosomes are condensed and then used Hi-C to measure the spatial organization of the DNA. The researchers discovered that the spatial structure of the chromatin gradually strengthens during spermatogenesis, until it reaches its ultimate strength in the mature sperm. They suggest that this organization enables the sperm cells to activate a wide variety of genes during meiosis, enabling the cells to later gain the unique ability of producing all cell types after fertilization. According to Dr. Kaplan, “In the future, we intend to use this approach in order to understand how the genome’s spatial structure may influence fertility.”      

This research was funded by the National Institutes of Health (NIH), Azrieli Foundation and the Henry and Marilyn Taub Scholarship.

Prof. Kaplan joined the Technion Rappaport Faculty of Medicine in 2016 and established an interdisciplinary laboratory for studying the spatial structure and function of genomes in health and disease.

Haia Khoury completed her BSc at the Technion’s Faculty of Biology and is currently pursuing an MSc in Biomedical Sciences at the Technion Rappaport Faculty of Medicine.

Click here  to read the paper in Nature Structural & Molecular Biology


Think Hardware

Share on:

Researchers at Technion have developed a platform able to accelerate the learning process of AI systems a 1000 fold

Prof.  Shahar Kvatinsky and doctoral student Tzofnat Greenberg-Toledo, together with students Roee Mazor and Ameer Haj-Ali of Technion’s Andrew and Erna Viterbi Faculty of Electrical Engineering recently published their research in the IEEE Transactions on Circuits and Systems journal, published by the Institute of Electrical and Electronics Engineers (IEEE).

Prof.  Shahar Kvatinsky and his research team

In recent years, there has been major progress in the world of artificial intelligence, mainly due to models of deep neural networks (DNNs); sets of algorithms inspired by the human brain and designed to recognize patterns. Inspired by human learning methods, these DNNs have had unprecedented success in dealing with complex tasks such as autonomous driving, natural language processing, image recognition and the development of innovative medical treatments which is achieved through the machine’s self-learning from a vast pool of examples often represented by images. This technology is developing rapidly in academic research groups and leading companies such as Facebook and Google are utilizing it for their specific needs. 

Read more

Uri Sivan – Technion’s New President

Share on:

The Technion Council headed by Mr. Gideon Frank, has elected Prof. Uri Sivan, of the Faculty of Physics as the next president of Technion. The Council’s decision was based on the recommendation of the Search Committee for the Technion President and received sweeping support from the Academic Assembly. The appointment is subject to the final approval of the International Board of Governors which is set to convene in June.

Prof. Sivan will commence his term as President of Technion on October 1, 2019, and will replace the outgoing President Prof. Peretz Lavie, who will complete his term after a decade in office.

Prof. Sivan, 64, a resident of Haifa, is married and the father of three. He served as a pilot in the Israeli Air Force. He has a BSc in Physics and Mathematics, an MSc and Ph.D. in Physics, all with honors from Tel Aviv University.

In 1991, after three years at IBM’s T. J. Watson Research Center in New York, Prof. Sivan joined the Faculty of Physics at Technion. His research has covered a wide range of fields including quantum mesoscopic physics and the harnessing of molecular and cellular biology for the self-assembly of miniature electronic devices. In recent years, his research has focused on the way water orders next to molecules and the effect of this ordering on inter-molecular interactions in biologically relevant solutions. Within this framework, Prof. Sivan’s group designs and builds unique, ultra-high-resolution atomic force microscopes.

Read More