An electrical engineer finds a new outlet for his work: the human body
You could say tinkering is in his genes. When Ramez Daniel was only 12, he cobbled together a car that ran on electricity. Now the assistant professor in the Faculty of Biomedical Engineering at the Technion tinkers with a very different kind of material: human cells. Prof. Daniel works in the fast-growing field of synthetic biology to understand how these fundamental units of life can be engineered to treat diseases and warn of dangerous medical conditions.
While pursuing his bachelor’s degree at the Technion and his graduate studies at Tel Aviv University, Prof. Daniel designed electrical circuits. “At my heart, I am a designer,” he said. Looking to solve new challenges with his design skills, Daniel conducted his postdoctoral research in the then-nascent field of synthetic biology at MIT. Synthetic biology introduces new behaviors in living cells by injecting protein networks. Using engineering concepts, these networks can be designed to respond in certain ways to external conditions.
Just like a computer processes signals from electrons, a cell can be made to process signals from chemicals. Prof. Daniel’s recent research focuses on the enzyme luciferase, present in many bacteria. When injected into cells exposed to toxic chemicals such as ethanol or nucleic acids, the luciferase lights up. It’s essentially like a canary in a coal mine, signaling danger.
